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Abstract. The theory of dynamic vacuum pressure evolution in heavy-ion accelerators in presence of beam losses is 
discussed. Some particular cases are considered in more detail: average pressure evolution, steady-state vacuum pressure 
profile with account of beam losses, and pressure bumps induced by particle losses on the collimators. Practical 
applications to beam lifetime measurements at the SIS18 of GSI Darmstadt and desorption experiments at RHIC of BNL 
are considered. 

 

INTRODUCTION 
Vacuum pressure rise induced by lost ions has been 

observed in several heavy-ion rings: in LEAR at 
CERN Geneva [1], in AGS Booster [2] and RHIC [3] 
at BNL Upton, and in SIS18 [4] at GSI Darmstadt. 
This has caused operational difficulties especially for 
low energy machines like LEAR, AGS Booster and 
SIS18. Test-stand measurements and machine 
experiments have been performed to measure 
desorption yields. In some cases modeling of the 
pressure evolution was necessary to determine the 
desorption yield from the measured pressure bumps. 
The method to describe the pressure evolution in 
heavy-ion machines in the presence of beam ion losses 
suggested in this paper allows to describe the average 
pressure rise in the machine as well as the self-
consistent steady -state pressure profile in the 
approximation of persistent small beam particle losses.  

THE BASIC EQUATION 
We will use a 1D diffusion type equation for the 

evolution of the linear pressure profile P(x,t) in the 
vacuum tube of the accelerator: 
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Here c is the specific linear conductance, q and q? are 
the linear thermal and desorption outgassing, s  is the 
linear pumping speed, v is the volume per unit length, 
x is the space and t the time coordinates. Initially, we 
consider equations for a single component residual gas 
only. Later in the paper we will consider more than 
one gas component whenever the single-gas approach 
fails to successfully describe the measurements. 

One must supplement Eq.(1) with the appropriate 
initial conditions on the time coordinate and boundary 
conditions on the space coordinate. The latter is in 
general the periodicity condition of the vacuum system 
although different types of boundary conditions may 
be necessary for different measurement conditions 
(like a zero flow at closed valves, or an exponentially 
decreasing flow in long NEG-coated vacuum 
chambers with high linear pumping speed). 

The desorption outgassing term qη may be 
expressed as follows: 

 ∫ ′′′= xdxPxxG
T

N
q )(),(

ησ
η  (2) 

where η is the desorption coefficient, σ is the beam 
particle loss cross-section,  N is the number of beam 
ions, T is the beam revolution time. The function 
G(x,x' ) describes how many of beam particles lost at 
position x' in a slice dx' desorb at the vacuum chamber 
wall at position x. Because all lost part icles will 



eventually arrive at the vacuum chamber wall the 
G(x,x' ) is chosen to be normalized to unity: 

 ∫ =′ 1),( dxxxG  (3) 

AVERAGE PRESSURE EVOLUTION 

The beam life-time in the machine depends on the 
pressure averaged over the circumference L. The 

evolution of the average pressure ∫= LdxxPP /)(  

can be derived from integration of Eq.(1): 
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Here the normalization Eq. (3) was taken into account. 
The effective linear pumping speed 

∫= LPdxxPxsseff /)()(  depends, in principle, on 

the pressure but within the accuracy of our model we 

neglected this dependency. ∫= Ldxxqq /)(  is the 

average thermal outgassing. In the derivation of Eq.(4) 
we also neglected the weak dependence on the space 
coordinate of the linear volume and the specific 
conductance. 

From Eq.(4) the pressure stabilit y condition for 
small persistent beam losses reads: 
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and the average pressure under the stable conditions is 
given as follows: 
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where effsqP /0 =  is the static pressure in absence 
of beam losses. 

In the case of considerable beam losses the 
intensity N cannot be taken to be time-independent and 
one must consider the beam life-time equation: 
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where nL≈2.7⋅1025 m-3 is the number of molecules per 
cubic meter under the normal conditions. 
Simultaneous solution of Eq. (4) and Eq.(7)  allows to 

find the parameters η, σ,,  seff and 0P  from the beam 

life-time measurements. This procedure is applied in 

[4] for the case of U28+ beam loss induced pressure rise 
in the SIS18. 

STEADY-STATE PRESSURE PROFILE 

The pressure profile along the orbit in the presence 
of persistent beam losses may differ drastically from 
the static pressure without beam losses. The 
knowledge of the steady-state pressure profile under 
the beam loss induced desorption is important for 
determining the right distribution of the vacuum pump 
positions along the machine orbit. 

The equation for the steady -state pressure profile 
may be obtained from Eqs.(1)-(2) by setting the time-
derivative to zero: 
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It is interesting to note that with zero thermal 
outgassing the integro-differential equation Eq.(8) 
becomes a eigen-value problem for the parameter 
ησN/T, and corresponding eigen-functions P(x). The 
lowest eigen-value ησN/T≈seff corresponds to the 
stability threshold Eq.(5). 

In Fig.1 the charge-exchange U28+→U29+ beam loss 
profile in the SIS18 is presented, corresponding to the 
solution of  Eq.(8), i.e. the case when the lost particles 
experience the charge-exchange according to the local 
pressure. Also shown is the beam loss profile 
assuming a uniform distribution of charge -exchange 
events along t he orbit.  
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FIGURE 1. Profile of beam particle losses on the vacuum 
chamber wall of SIS18 superperiod: the red line is for the 
losses with corresponding charge-exchange rate proportional 
to the local pressure value, the dashed line is for the charge-
exchange rate uniformly distributed along the circumference. 



One notices a weak dependence of the pressure 
distribution on the loss profile. This is because the 
position of the beam ion losses is mostly determined 
by the bending magnets and the aperture limitations, 
and not by the locations where the ions experienced 
the charge-exchange. 

LUMPED PUMPING AND LOSSES ON 
COLLIMATORS 

The equation for the steady-state pressure is 
extremely simplified in the case of lumped pumping 
and losses on collimators only: 
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with boundary conditions at the collimator and pump 
positions: 
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Here the coefficient kκ  characterizes the fraction of 

the total beam loss that occurs at collimation position 

xk ( kκ =0 if there is no collimator at this position) and 

Sk is the pumping speed at this position (Sk=0 if there 
is no pump), Pk  is the vacuum pressure value at xk. 

Suppose that all charge-exchange losses with U 
beam in the SIS18 are intercepted at the collimators 
equipped with local pumps. Then the pressure will not 
be affected by the lost beam desorption if the r.h.s. of 
Eq. (10) is zero, i.e. 
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For a typical set of parameters η ≈ 104, σ  ≈ 10- 20 

m2, kP / P   ≈ 1/2, kκ  ≈ 1/48 (we assume losses 
equally distributed onto four collimators in each of the 
12 superperiods of SIS18), L  ≈ 217 m (the orbit 
length), T  ≈ 4.5⋅10-6 s (for injection energy E  ≈  11 
MeV/u), S  ≈ 2 m3/s (of the order of ordinary titanium-
sublimation pump) one finds N ≈ 1010. 

As another example of our analysis method let us 
consider a desorption experiment with closed valves 
performed at RHIC, with the layout shown in Fig.2. 

We consider a set of four measurements: #1: V1 
closed, V2 open, blue beam; #2: V1 closed, V2 open, 
yellow beam; #3: V1 open, V2 closed, yellow beam; 
#4: V1 open, V2 closed, blue beam. The closed valves 

were irradiated with continuous pulses of Ekin  = 9 
GeV/u Au79+ ions, and the pressure increase was 
measured with the ion gauge G3. Results of the 
analysis are shown in Table 1. 

FIGURE 2. Layout of vacuum equipment: G denotes 
gauges, P pumps, V valves, RGA  a residual gas analyzer, 
and IP the nominal beam interaction point. On the left hand 
side is a 5.15 m section with activated NEG coating.  

TABLE 1. RHIC desorption measurement data. 
Measurement Ion rate, 1/s ∆ P, Torr η 

#1 1.7⋅108 1.9⋅10-11 1100 
#2 1.4⋅108 2.4⋅10-11 1600 
#3 2.2⋅108 0.6⋅10-11 260 
#4 1.9⋅108 0.6⋅10-11 300 

In this case the entire beam hit the valve (and a 
large part passed through) thus the first term in the 
r.h.s of Eq.(10) at the valve position should be: 
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where k=1.38⋅10-23 J/K is the Bolzman constant, Troom 

=293 K the room temperature, and N&  is number of 
ions per time that hit the closed valve (second column 
of Table 1). The term "0" in the l.h.s. of Eq. (12) means 
zero flow from the valve (besides the desorption 
described by the first term). 

At the position of the gauge G3 the Eq. (10) has 
only a pumping t erm: 
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where kP∆  is the observed pressure increase (third 
column of Table 1). The "0" term in the l.h.s. of 
Eq.(13) means zero flow towards the gauge G4 (there 
was no pressure rise observed at the G4 position). 

Combination of Eq.(12) and Eq. (13) gives us a 
formula to calculate the desorption yield η: 
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where Sk=270 l/s is the pumping speed of the pump P3, 
NA=6.02⋅1023 is the Avogadro number, Vmole=22.4 l is 



the volume of the ideal gas under the normal 
conditions, Patm=760 Torr is the atmospheric pressure. 

The resulting desorption yield values are shown in 
the last column of Table 1. A more detailed report of 
this measurement is in preparation [5].  

EQUATIONS WITH ACCOUNT OF THE 
SURFACE STAY TIME 

In another RHIC desorption experiment the Au 
beam of energy  Ekin = 9 GeV/u was intentionally lost 
in a straight section and the pressure rise was 
measured in the three gauges pw3.1, pw3.2 and pw3.3. 

An attempt to fit the pressure evolution observed in 
the gauges with the help of Eq.(1) was not successful: 
no reasonable set of parameters could explain the 
observed delay between the moment of beam impact 
and the time of the maximum pressure reading in the 
gauges, as it is shown in Fig.2. 

  

FIGURE 2. Measured pressure evolution and 
reproduced behavior using Eq.(1). Measurement and model 
differ for the readings in all three gauges.  

We met two main difficulties with the fit to the 
measurement: a) Eq.(1) predicts a much shorter 
pressure bump arrival time compared to what was 
measured, b) the pressure rise- and decay-times were 
longer in the experiment than it could be fit with 
Eq. (1). In order to explain the actual delay we a) 
considered a two component gas (the slow decay may 
be explained by the component with slow pumping 
time) and b) introduced one more term into Eq.(1), 
namely the term describing the surface stay time of the 
molecules: 
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where the terms ),(),( 21 xtPsxtPs τ−−  describe 
sticking of molecules to the vacuum chamber wall at 
position x and time t with the linear pumping speed s1 
and release of the molecules at the same position but 
with the time delay τ and linear desorbing speed s2.  

Eq.(15) describes the measured pressure evolution 
reasonably good as it is shown in Fig.3. More details 
on this experiment can be found in [6]. 

 

FIGURE 3. Measured pressure evolution (blue and red 
points) and reproduced behavior using Eq.(15) introducing 
surface stay time and a gas with two components.  

REFERENCES 
1. S. Baird et al, “Recent Results on Lead-Ion 

Accumulation in LEAR for the LHC”, CERN-PS/97-
03 (DI), Geneva, Switzerland. 

2. Zhang, S. Y., and Ahres, L. A., “Booster 
Gold Beam Injection Efficiency and Beam Loss” in 
EPAC 98: Sixth European Particle Accelerator 
Conferenc, edited by S Myers et al., AIP Conference 
Proceedings, New York: American Institute of 
Physics, 1998, pp. 2149 -2151. 

3. S.Y.Zhang, "RHIC Vacuum Pressure Bump", 
C-A/AP/67, January 2002. 

4. E.Mustafin et al., NIM A 510, 199 -205 
(2003). 

5. W.Fischer et al., "Molecular desorption of 
stainless steel from irradiation with 9 GeV/u Au79+ 
ions under perpendicular impact", in preparation. 

6. U.Iriso et al, "Interpretation of desorption 
measurements of high-energy beams at RHIC", 
CAD/AP/178, November 2004. 


